UNBIASED INSTRUMENTAL VARIABLES ESTIMATION UNDER KNOWN FIRST-STAGE SIGN By

نویسندگان

  • Isaiah Andrews
  • Timothy B. Armstrong
چکیده

We derive mean-unbiased estimators for the structural parameter in instrumental variables models where the sign of one or more first stage coefficients is known. In the case with a single instrument, the unbiased estimator is unique. For cases with multiple instruments we propose a class of unbiased estimators and show that an estimator within this class is efficient when the instruments are strong while retaining unbiasedness in finite samples. We show numerically that unbiasedness does not come at a cost of increased dispersion: in the single instrument case, the unbiased estimator is less dispersed than the 2SLS estimator. Our finite-sample results apply to normal models with known variance for the reducedform errors, and imply analogous results under weak instrument asymptotics with an unknown error distribution. Preliminary version email: [email protected] email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbiased Instrumental Variables Estimation Under Known First-Stage Sign

We derive mean-unbiased estimators for the structural parameter in instrumental variables models with a single endogenous regressor where the sign of one or more first stage coefficients is known. In the case with a single instrument, there is a unique non-randomized unbiased estimator based on the reduced-form and first-stage regression estimates. For cases with multiple instruments we propose...

متن کامل

A note on the control function approach with an instrumental variable and a binary outcome.

Unobserved confounding is a well known threat to causal inference in non-experimental studies. The instrumental variable design can under certain conditions be used to recover an unbiased estimator of a treatment effect even if unobserved confounding cannot be ruled out with certainty. For continuous outcomes, two stage least squares is the most common instrumental variable estimator used in ep...

متن کامل

A Note on the Control Function Approach with an Instrumental Variable and a Binary Outcome

Unobserved confounding is a well-known threat to causal inference in non-experimental studies. The instrumental variable design can under certain conditions be used to recover an unbiased estimator of a treatment effect even if unobserved confounding cannot be ruled out with certainty. For continuous outcomes, two stage least squares is the most common instrumental variable estimator used in ep...

متن کامل

Instrumental Variables Estimation with Many Weak Instruments Using Regularized Jive

We consider instrumental variables regression in a setting where the number of instruments is large and the first stage prediction signal is not necessarily sparse. In particular, we work with models where the number of available instruments may be larger than the sample size and consistent model selection in the first stage may not be possible. Such a situation may arise when there are many we...

متن کامل

Applications of James–Stein Shrinkage (II): Bias Reduction in Instrumental Variable Estimation

In a two-stage linear regression model with Normal noise, I consider James–Stein type shrinkage in the estimation of the first-stage instrumental variable coefficients. For at least four instrumental variables and a single endogenous regressor, I show that the standard two-stage least-squares estimator is dominated with respect to bias. I construct the dominating estimator by a variant of James...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015